ii

1

Table of Contents

Principles and Elements

of

POWER ELECTRONICS

Devices, Drivers, Applications, and Passive Components

Barry W Williams B.Sc., Dipl.Eng., B.Eng., M.Eng.Sc., Ph.D., D.I.C.

Professor of Electrical Engineering University of Strathclyde Glasgow

BWW

Published by Barry W Williams ISBN 978-0-9553384-0-3 © Barry W Williams 2006

1

Basic Semiconductor Physics and Technology

1.1	Example 1.1: Resistance of homogeneously doped sili Processes Forming and involved in forming semiconduc	con 2 ctor devices 4
	1.1.1 Alloying 1.1.2 Diffused Example 1.2: Constant Surface Concentration diffusion Example 1.3: Constant Total Dopant diffusion – drive i Example 1.4: Constant Total Dopant diffusion – drive i 1.1.3 Epitaxy growth - deposition 1.1.4 Ion-implantation and damage annealing Example 1.5: Ion implantation	n – predepostion 7 n -#1 8 n- #2 8 14
1.2	Thin film deposition	15
	1.2.1 Chemical Vapour Deposition (CVD)1.2.2 Physical Vapour deposition (PVD)	
1.3	Thermal oxidation and the masking process	20
1.4	Polysilicon Deposition	22
1.5.	Lithography – optical and electron	24
	1.5.1 Optical Lithography 1.5.2 Electron Lithography	
1.6	Etching	28
	1.6.1 Wet Chemical Etching 1.6.2 Dry Chemical Etching	
1.7	Lift-off processing	34
1.8	Resistor fabrication	35
1.9	Isolation techniques	35
1.10	Wafer cleaning	36
1.11	Planarization	37
1.12	Gettering	38
1.13	Lifetime control	38
1.14	Silicide formation	39
1.15	Ohmic contact	40
1.16	Glassivation	43
1.17	Back side metallisation and die separation	44
1.18	Wire bonding	44

iii

47

52

57

71

- 1.19 Types of wafer silicon
 - 1.19.1 Purifying silicon
 - 1.19.2 Crystallinity
 - 1.19.3 Single crystal silicon 1.19.3i Czochralski process
 - 1.19.3ii Float-zone process
 - 1.19.3iii Ribbon silicon
 - 1.19.4 Multi-crystalline silicon
 - 1.19.5 Amorphous silicon
- 1.20 Silicon carbide and other wide band gap materials
- 1.21 Si and wide band gap materials physical and electrical properties compared 53

2

The pn Junction

	Example 2.1:	Built-in potential of an abrupt junction	58	
2.1	The pn Junctio	on under forward bias (steady-state)		59
2.2	The pn Junctio	on under reverse bias (steady-state)		59
	2.2.1 Punch- 2.2.2 Avaland 2.2.3 Zener b	through voltage che breakdown reakdown		
2.3	Thermal effects	s		60
	Example 2.2:	Diode forward bias characteristics	61	
2.4	Models for the	bipolar junction diode		61
	2.4.1 Piecew	ise-linear junction diode model		
	Example 2.3:	Using the pwl junction diode model	62	
	Example 2.4:	Static linear diode model	62	
	2.4.2 Semico	nductor physics based junction diode model		
		2.4.2i - Determination of zero bias junction capacitan	ice, C _{jo}	
		2.4.2ii - One-sided pn diode equations		
	Example 2.5:	Space charge layer parameter values	67	

3

Power Switching Devices and their Static Electrical Characteristics

3.1 Power diodes

71

- 3.1.1 The pn fast-recovery diode
- 3.1.2 The p-i-n diode
- 3.1.3 The power Zener diode
- 3.1.4 The Schottky barrier diode
- 3.1.5 The silicon carbide Schottky barrier diode

	Dama			70
3.2	Power	r switching transistors		/6
	3.2.1	The bipolar npn power switching junction transistor (BJT)	76	
		3.2.1i - BJT gain		
		3.2.1ii - BJT operating states		
	2 2 2 2	3.2.111 - BJT maximum voltage - first and second breakdown		70
	3.2.2	The metal oxide semiconductor held enect transistor (MOS	SFEI)	79
		3.2.2i - MOSFET drain current		
		3.2 2iii - MOSEET transconductance and output conductance		
		3.2.2iv - MOSFET on-state resistance		
		3.2.2v - MOSFET p-channel device		
	Exam	ple 3.1: Properties of an n-channel MOSFET cell	34	
		3.2.2vi - MOSFET parasitic BJT		
		3.2.2vii - MOSFET on-state resistance reduction		
		1 - Trench gate		
		2 - Vertical super-junction		
	3.2.3	The insulated gate bipolar transistor (IGBT)	37	
		3.2.3i - IGBT at turn-on		
		3.2.311 - IGBT in the on-state		
		3.2.3/// - IGBT at turn-on 3.2.3// - IGBT latch-up		
		1 - IGBT on-state SCR static latch-up		
		2 - IGBT turn-off SCR dynamic latch-up		
	3.2.4	Reverse blocking NPT IGBT	90	
	3.2.5	Forward conduction characteristics	91	
	3.2.6	PT IGBT and NPT IGBT comparison	91	
	3.2.7	The junction field effect transistor (JFET)	3 1	
3.3	Thyr	istors		92
	3.3.1	The silicon-controlled rectifier (SCR)		
		3.3.1i - SCR turn-on		
		3.3.1ii - SCR cathode shorts		
		3.3.1iii - SCR amplifying gate		
	3.3.2	The asymmetrical silicon-controlled rectifier (ASCR)		
	3.3.3	The reverse-conducting thyristor (RCT)		
	3.3.4	The bi-directional-conducting thyristor (BCT)		
	3.3.5	2.2 5i CTO turn off mochanism		
	336	The gate commutated thyristor (GCT)		
	0.0.0	3.3.6i - GCT turn-off		
		3.3.6ii - GCT turn-on		
	3.3.7	The light triggered thyristor (LTT)		
	3.3.8	The triac		
3.4	Power	r packages and modules		104

4

Electrical Ratings and Characteristics of Power Semiconductor Switching Devices

- 4.1 General maximum ratings of power switching semiconductor devices 109
 - 4.1.1 Voltage ratings
 - 4.1.2 Forward current ratings
 - 4.1.3 Temperature ratings
 - 4.1.4 Power ratings

4.2	The fast-recovery diode	111
	 4.2.1 Turn-on characteristics 4.2.2 Turn-off characteristics 4.2.3 Schottky diode dynamic characteristics 	
4.3	The bipolar, high-voltage, power switching npn junction transistor	114
	 4.3.1 Transistor ratings 4.3.1i - BJT collector voltage ratings 4.3.1ii - BJT safe operating area (SOA) 4.3.2 Transistor switching characteristics 4.3.2i - BJT turn-on time 4.3.2ii - BJT turn-off time 	
	4.3.3 BJT phenomena	
4.4	The power MOSFET	119
	 4.4.1 MOSFET absolute maximum ratings 4.4.2 Dynamic characteristics 4.4.2i - MOSFET device capacitances 4.4.2ii - MOSFET device capacitances 1 - MOSFET turn-on 2 - MOSFET turn-off 	
	Example 4.1: MOSFET drain characteristics 124	
4.5	The insulated gate bipolar transistor	125
	4.5.1IGBT switching4.5.2IGBT short circuit operation	
4.6	The thyristor	127
	 4.6.1 SCR ratings 4.6.1i - SCR anode ratings 4.6.1ii - SCR gate ratings 4.6.2 Static characteristics 4.6.2 is SCR gate trainage requirements 	
	 4.6.2ii - SCR holding and latching currents 4.6.3 Dynamic characteristics 4.6.3i - SCR anode at turn-on 4.6.3ii - SCR anode at turn-off 	
4.7	The gate turn-off thyristor	130
	4.7.1 Turn-on characteristics 4.7.2 Turn-off characteristics	

v

Coo	ling	of Power Switching Semiconducto	r Devices
5.1	Therm	al resistances	138
5.2	Conta	ct thermal resistance	138
	5.2.1 5.2.2	Thermal Interface Materials Phase Change Gasket Materials (solid to liquid)	
5.3	Heat-s	inking thermal resistance	142

5.4	Modes of power dissipation	146
	5.4.1Steady-state response5.4.2Pulse responseExample 5.1:Semiconductor single power pulse capability 149Example 5.2:A single rectangular power pulse5.4.3Repetitive transient responseExample 5.3:Semiconductor transient repetitive power capabilityExample 5.4:Composite rectangular power pulses153Example 5.5:Non-rectangular power pulses155	152
5.5	Average power dissipation	158
	5.5.1 Graphical integration5.5.2 Practical superposition	
5.6	Power losses from manufacturers' data sheets	158
	5.6.1Switching transition power loss, P_s 5.6.2Off-state leakage power loss, P_ℓ 5.6.3Conduction power loss, P_c 5.6.4Drive input device power loss, P_G	
5.7	Heat-sinking design cases	160
	5.7.1 Heat-sinking for diodes and thyristors 5.7.1i - Low-frequency switching 5.7.1i - High-frequency switching 5.7.1i - High-frequency switching 5.7.2 Heat-sink design for a diode 162 5.7.2 Heat-sink design for an IGBT - repetitive operation at a 5.7.3 Example 5.7: Heat-sink design for an IGBT - repetitive operation at a 5.7.3 Example 5.8: Heat-sink for a MOSFETs Example 5.8: Heat-sink design for a mosfet - repetitive operation at a Example 5.9: Heat-sink design for a mosfet - repetitive operation at a 165 Example 5.10: Two thermal elements on a common heatsink 165 Example 5.11: Six thermal elements in a common package 166	high duty cycle 163 rrent, low duty cycle 164 at high duty cycle 165
5.8	Appendix: Comparison between aluminium oxide and aluminium nitride 167	
5.9	Appendix: Properties of substrate and module materials	169
5.10	Appendix: Emissivity and heat transfer coefficient	171
5.11	Appendix: Ampacities and mechanical properties of rectangular co	pper busbars 173
5.12	Appendix: Isolated substrates for power modules	173

6

135

High-performance Cooling for Power Electronics

179

6.1	Condu	uction and heat spreading	182
6.2	Heat-s	sinks	183
	6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	Required heat-sink thermal resistance Heat-sink selection Heat sink types Heatsink fin geometry Thermal performance graph	
6.3	Heats	ink cooling enhancements	190

6.4	Heatsink fan and blower cooling		190
	6.4.1 Fan selection 6.4.2 The fan (affinity) Laws Example 6.1: Fan laws 6.4.3 Estimating fan life Example 6.2: Fan lifetime	202 207	
	Example 6.3: Fan testing	207	
6.5	Enhanced air cooling		209
6.6	Liquid coolants for power electronics cooling		209
	6.6.1Requirements for a liquid coolant6.6.2Dielectric liquid coolants6.6.3Non-dielectric liquid coolants		
6.7	Direct and indirect liquid cooling		213
6.8	Indirect liquid cooling		214
	6.8.1 Heat pipes – indirect cooling Example 6.4: Heat-pipe 6.8.2 Cold plates – indirect cooling	221	
	Example 6.5: Cold plate design	229	
6.9	Direct liquid cooling		230
	6.9.1Immersion cooling – direct cooling6.9.2Liquid jet impingement – direct cooling6.9.3Spray cooling – direct cooling		
6.10	Microchannels and minichannels		235
6.11	Electrohydrodynamic and electrowetting cooling		237
6.12	Liquid metal cooling		237
6.13	Solid state cooling		238
	 6.13.1 Thermoelectric coolers Example 6.6: Thermoelectric cooler design Example 6.7: Thermoelectrically enhanced heat sink 6.13.2 Superlattice and heterostructure cooling 6.13.3 Thermionic and thermotunnelling cooling 	240 241	
6.14	Cooling by phase change		245
6.15	Appendix: Properties of substrate and module materials		247

vii

Load, Switch, and Commutation Considerations

7.1 Load types

711 The re	sistive load		
Example 7.1:	Resistive load switching losses	254	
Example 7.2:	Transistor switching loss for non-linear	r electrical transitions 25	55
7.1.2 The in	ductive load		
Example 7.3:	Zener diode, switch voltage clamping	257	
Example 7.4:	Inductive load switching losses	261	
7.1.3 Diode	reverse recovery with an inductive load		
Example 7.5:	Inductive load switching losses with de	evice models 262	

7.3	Switching classification		
	7.3.1 7.3.2 7.3.3 7.3.4	Hard switching Soft switching Resonant switching Naturally-commutated switching	
7.4	Switch	configurations	266
7.5	Power	converter configuration classification	267

8

Driv	ving Transistors and Thyristors	
8.1	Application of the power MOSFET and IGBT	271
	8.1.1 Gate drive circuits 8.1.1i - Negative gate drive 8.1.1i - Floating power supplies	
	8.1.2 Gate drive design procedure Example 8.1: MOSFET input capacitance and switching time	s 279
8.2	Application of the thyristor	279
	8.2.1 Thyristor gate drive circuits i. Vacuum cleaner suction control circuit ii. Lamp dimmer circuit iii. Back EMF feedback circuits	
	8.2.2 Thyristor gate drive design Example 8.2: A light dimmer 2	88
8.3	Drive design for GCT and GTO thyristors	288

9

251

251

264

Protecting Diodes, Transistors, and Thyristors The non-polarised R-C snubber 394 9.1 9.1.1 R-C switching aid circuit for the GCT, the MOSFET, and the diode Example 9.1: *R-C snubber design for MOSFETs* 295 9.1.2 Non-polarised R-C snubber circuit for a converter grade thyristor and a triac Example 9.2: Non-polarised R-C snubber design for a converter grade thyristor 297 298 9.2 The soft voltage clamp Example 9.3: Soft voltage clamp design 299 9.3 Polarised switching-aid circuits 301 9.3.1 The polarised turn-off snubber circuit - assuming a linear current fall 9.3.2 The turn-off snubber circuit - assuming a cosinusoidal current fall Example 9.4: Capacitive turn-off snubber design 308 9.3.3 The polarised turn-on snubber circuit - with air core (non-saturable) inductance Example 9.5: Turn-on air-core inductor snubber design 314 9.3.4 The polarised turn-on snubber circuit - with saturable ferrite inductance Example 9.6: Turn-on ferrite-core saturable inductor snubber design 317 9.3.5 The unified turn-on and turn-off snubber circuit

9.4 Snubbers for bridge legs

viii

ix

9.5	Appendix: Non-polarised turn-off <i>R</i> -C snubber circuit analysis	323
9.6	Appendix: Polarised turn-off <i>R-C-D</i> switching aid circuit analysis	324

10

Switching-aid Circuits with Energy Recovery

10.1	Energy recovery for inductive turn-on snubber circuits-single ended 3		
	10.1.1 10.1.2	Passive recovery Active recovery	
10.2	Energy	recovery for capacitive turn-off snubber circuits-single ended	333
	10.2.1 10.2.2	Passive recovery Active recovery	
10.3	Unified	turn-on and turn-off snubber circuit energy recovery	340
	10.3.1 10.3.2	Passive recovery Active recovery	
10.4	Inverte	r bridge legs	346
	10.4.1 10.4.2	Turn-on snubbers Turn-on and turn-off snubbers	
10.5	Snubbe	ers for multi-level inverters	349
	10.5.1 S 10.5.2 S	Snubbers for the cascaded H-bridge multi-level inverter Snubbers for the diode-clamped multi-level inverter	

10.5.3 Snubbers for the flying-capacitor clamped multi-level inverter

10.6 Snubbers for series connected devices 350 10.6.1 Turn-off snubber circuit active energy recovery 10.6.2 Turn-on snubber circuit active energy recovery 10.6.3 Turn-on and turn-off snubber circuit active energy recovery 10.6.4 General active recovery concepts 10.6.5 Soft clamping turn-off snubbers for series connected devices

10.7 Snubber energy recovery for magnetically coupled based switching circuits 358

	10.7.1 Passive recovery 10.7.2 Active recovery 10.7.3 Transformer leakage passive recovery
10.8	General passive snubber energy recovery concepts
10.9	Snubbers for rectified outputs

11

Device Series and Parallel Operation, Interference, and Grounding

11.1 Series connection and operation of power semiconductor devices 367

11.1.1 Series semiconductor device operation 11.1.1i - Steady-state voltage sharing Example 11.1: Series device connection - static voltage balancing 369

11.1.1ii - Transient voltage sharing Example 11.2: Series device connection – dynamic voltage balancing 372 11.2 Parallel connection and operation of power

Paralle	I connection and operation of power semiconductor devices 373
11.2.1	Parallel semiconductor device operation 11.2.2i - Matched devices

	11.2.2i - Matched devices 11.2.2ii - External forced current sharing Example 11.2: Posicitive parallel current sharing	a current balancing 275
	(a) current sharing analysis for two devices:- r_o (b) current sharing analysis for two devices:- r_o (c) current sharing analysis for n devices:- r_o	=0 ≠0
	Example 11.4: Transformer current sharing-static and dyn	namic current balancing 380
11.3	Interference	381
	 11.3.1 Noise 11.3.1i - Conducted noise 11.3.1ii - Radiated electromagnetic field coupling 11.3.1iii - Electric field coupling 11.3.1iv - Magnetic field coupling 11.3.2 Mains filters 11.3.3 Noise filtering precautions 	
11.4	Earthing	384
	11.4.1 Earth and neutral	
11.5	Isolation (galvanic)	387
	11.5.1 Isolation problem and related measurements 11.5.2 Isolation mechanisms	

12

329

360 362

367

Device Protection

12.1	Protection overview - over-voltage and over-current		393
	12.1.1 Ideal secondary level protection12.1.2 Overvoltage protection devices12.1.3 Over-current protection devices		
12.2	Over-current protection		396
	12.2.1 Protection with fuses 12.2.1i - Pre-arcing I ² t 12.2.1ii - Total I ⁴ t let-through 12.2.1iii - Fuse link and semiconductor I ² t co-ordination 12.2.1iv - Fuse link derating and losses		
	Example 12.1: AC circuit fuse link design	404	
	12.2.1v – Pulse derating		
	Example 12.2: AC circuit fuse link design for I ² t surges	405	
	12.2.1vi - Other fuse link derating factors		
	Example 12.3: AC circuit fuse link derating	407	
	12.2.1vii - Fuse link dc operation		
	Example 12.4: DC circuit fuse link design	409	
	12.2.1viii - Alternatives to dc fuse operation		
	12.2.2 Protection with resettable fuses		
	12.2.2i Polymeric PTC devices		
	12.2.2ii Ceramic PTC devices		
	Example 12.5: Resettable ceramic fuse design	419	

12.3.3 Summary of over-current limiting devices

х

447

421 Overvoltage protection 12.3 12.3.1 Transient voltage suppression clamping devices 12.3.1i - Comparison between Zener diodes and varistors Example 12.6: Non-linear voltage clamp 428 12.3.2 Transient voltage fold-back devices 12.3.2i The surge arrester 12.3.2ii Thyristor voltage fold-back devices 12.3.2iii Polymeric voltage variable material technologies 12.3.2iv The crowbar 12.3.3 Protection coordination 12.3.4 Summary of voltage protection devices 437 12.4 DC Circuit Breakers 12.4.1 Purely semiconductor DCCB

Example 12.7: IGBT DC circuit breaker

- 12.4.2 Hybrid DCCB: semiconductors shunted by a circuit breaker
- 12.4.3 Functionality unification

13

Naturally Commutating AC to DC Converters - Uncontrolled Rectifiers

13.1

447 Single-phase uncontrolled converter circuits - ac rectifiers 13.1.1 Half-wave circuit with a resistive load, R 13.1.2 Half-wave circuit with a resistive and back emf R-E load Example 13.1: Half-wave rectifier with resistive and back emf load 449 13.1.3 Single-phase half-wave circuit with an R-L load 13.1.3i - Inductor equal voltage area criterion 13.1.3ii - Load current zero slope criterion 13.1.4 Single-phase half-wave rectifier circuit with an R-L load and a back emf 13.1.5 Half-wave rectifier circuit with an R load and capacitor filter Example 13.2: Half-wave rectifier with source resistance 455 13.1.6 Single-phase half-wave circuit with an R-L load and freewheel diode Example 13.3: Half-wave rectifier – with load freewheel diode 458 13.1.7 Single-phase full-wave bridge rectifier circuit with a resistive load, R 13.1.8 Single-phase full-wave bridge rectifier circuit with a resistive and back emf load Example 13.4: Full-wave rectifier with resistive and back emf load 462 13.1.9 Single-phase full-wave bridge rectifier circuit with an R-L load 13.1.9i - Single-phase full-wave bridge rectifier circuit with an output L-C filter 13.1.9ii Single-phase, full-wave bridge rectifier circuit with an R-L-E load Example 13.5: Full-wave diode rectifier with L-C filter and continuous load current 468 13.1.9iii - Single-phase full-wave bridge rectifier with highly inductive loads-constant load current 13.1.9iv - Single-phase full-wave bridge rectifier circuit with a C-filter and resistive load Example 13.6: Single-phase full-wave bridge circuit with C-filter and resistive load 471 13.1.9v - Other single-phase bridge rectifier circuit configurations 13.2 Three-phase uncontrolled rectifier converter circuits 473 13.2.1 Three-phase half-wave rectifier circuit with an inductive R-L load 13.2.2 Three-phase full-wave rectifier circuit with an inductive R-L load 13.2.2i - Three-phase full-wave bridge rectifier circuit with continuous load current 13.2.2ii - Three-phase full-wave bridge rectifier circuit with highly inductive load 13.2.2iii Three-phase full-wave bridge circuit with highly inductive load with an EMF source 13.2.2iv Three-phase full-wave bridge circuit with capacitively filtered load resistance Example 13.7: Three-phase full-wave rectifier 480 Example 13.8: Rectifier average load voltage 481

13.3	Uncontrolled rectifier input current harmonics and p	ower factor compensation 482
13.4	DC MMFs in converter transformers	484
13.5	Transformer rectifier combinations 13.5.1 Six-phase half wave rectified converters 13.5.1 Six-phase with neutral connection 13.4.1ii Three-phase double wye with a centre tappe 13.5.2 Three-phase full-wave rectified converters 13.5.3 Multi-phase full-wave rectified converters	485 ed inter-phase transformer
13.6	Voltage multipliers	489
	 13.6.1 Half-wave series multipliers 13.6.2 Half-wave parallel multipliers 13.6.3 Full-wave series multipliers Example 13.9: Half-wave voltage multiplier Example 13.10: Full-wave voltage multiplier 13.6.4 Three-phase voltage multipliers 13.6.5 Series versus parallel voltage multipliers 	493 494
13.7	Marx voltage generator	495
13.8	Definitions	498
13.9	Output pulse number	499

13.10 AC-dc converter generalised equations 500

14

14.1

Naturally Commutating AC to DC Converters - Controlled Rectifiers

Single-phase full-wave half-controlled converter 510 14.1.1 Single-phase, full-wave half-controlled circuit with an R-L load 14.1.1i - Discontinuous load current 14.1.1ii - Continuous load current 14.1.2 Single-phase, full-wave, half-controlled circuit with R-L and emf load Example 14.1: Single-phase, full-wave half-controlled rectifier 517 14.2 Single-phase controlled thyristor converter circuits 517 14.2.1 Single-phase half-wave circuit with an R-L load 14.2.1i - Case 1: Purely resistive load 14.2.1ii - Case 2: Purelv inductive load 14.2.1iii - Case 3: Back emf E and R-L load Example 14.2: Single-phase, half-wave controlled rectifier 521 14.2.2 Single-phase half-wave half-controlled 14.2.2i - discontinuous conduction 14.2.2ii - continuous conduction 14.2.3 Single-phase full-wave controlled rectifier circuit with an R-L load 14.2.3i discontinuous load current 14.2.3ii verge of continuous load current 14.2.3iii continuous load current (and also purely inductive load) 14.2.3iv Resistive load Example 14.3: Controlled full-wave converter - continuous and discontinuous conduction 528

- 14.2.4 Single-phase full-wave, fully-controlled circuit with R-L and emf load 14.2.4i - Discontinuous load current
 - 14.2.4ii Continuous load current

	Example 14.4: Controlled converter - continuous conduction a Example 14.5: Controlled converter – constant load current, b	nd back emf 535 ack emf, and overlap 537
14.3	Three-phase half-controlled converter	537
14.4	Three-phase fully-controlled thyristor converter circuits	540
	 14.4.1 Three-phase half-wave, fully controlled circuit with an intexample 14.6: Three-phase half-wave converter with freewheel diode Example 14.6: Three-phase half-wave rectifier with freewheel 14.4.3 Three-phase full-wave fully-controlled circuit with an indiated and the second sec	ductive load ith resistive load 542 el diode 544 uctive load o constant output current 551 555
14.7	Overlap	556
14.6	Overlap – inversion	560
	Example 14.9: Converter overlap	561
14.7	Summary	562
	 (i) Half-wave and full-wave, fully-controlled converter (ii) Full-wave, half-controlled converter (iii) Half-wave and full-wave controlled converter with load freewheel did 	ode
14.8	Definitions	564
14.9	Output pulse number	564

577

15

xiii

AC Voltage Regulators

14.10 AC-dc converter generalised equations

15.1	Single-phase ac regulator	577
	15.1.1 Single-phase ac regulator – phase control with line commutatio 15.1.1i - Resistive Load 15.1.1ii - Pure inductive Load 15.1.1iii - Load sinusoidal back emf	n
	15.1.11V - Semi-controlled single-phase ac regulator	500
	Example 15.1a: Single-phase ac regulator – #1	588
	Example 15.1b: Single-phase ac regulator - #2	589
	Example 15.1c: Single-phase ac regulator – pure inductive load	590
	Example 15.1d: Single-phase ac regulator - #1 with ac back emf co	mposite load 591
15.1.2 Single-phase ac regulator – integral cycle control – line commutated		
Example 15.2: Integral cycle control 594		594
	15.1.3 The solid-state relay (SSR)	
	15.1.3i Principle of operation	
	15.1.3ii Key power elements in solid-state relays	
	15.1.3iii Solid-state relav overvoltage fault modes	
	15.1.3iv Transient voltage protection devices for an SSR	
	15.1.3v Solid-state relay internal protection methods	
	15.1.3vi Application considerations	
	Example 15.3: Solid-state relay turn-on	603

	Example 15.4: Solid-state relay heatsink requirements 15.1.3vii DC output solid-state relays		604
15.2	Single-phase transformer tap-changer – line commutated		606
	Example 15.5: Tap changing converter	608	
15.3	Single-phase ac chopper regulator – commutable switches		609
	15.3.1 Single-phase ac chopper regulator – version #115.3.2 Single-phase ac chopper regulator – version #2		
15.4	Three-phase ac regulator		613
	 15.4.1 Fully-controlled three-phase ac regulator with wye load a 15.4.2 Fully-controlled three-phase ac regulator with wye load a 15.4.3 Fully-controlled three-phase ac regulator with delta load a 15.4.4 Half-controlled three-phase ac regulator 15.4.5 Other thyristor three-phase ac regulators Example 15.6: Star-load three-phase ac regulator – untapper a 15.4.6 Solid-state soft starters a 15.4.6 Solid-state soft-starter a 15.4.6 Solid-state soft-starter and application 	and isola and neu ed neutra	ated neutral tral connected al 627
15.5	Cycloconverter		643
15.6	Three phase fixed frequency hexagonal ac to ac converter		645
15.7	The matrix converter		646
	15.7.1 High frequency resonant dc to ac matrix converter		
15.8	ac to ac conversion with a dc link		654
15.9	Power quality: load efficiency and supply current power fac	tor	655
	15.9.1 Load waveforms 15.9.2 Supply waveforms Example 15.7: Power quality - load efficiency Example 15.8: Power quality – squarewave distortion Example 15.9: Power quality - sinusoidal source and constant Example 15.10: Power quality - sinusoidal source and non-l	657 657 current l	load 658 ad 659

16

DC Choppers

16.1	DC chopper variations	663
16.2	First quadrant dc chopper	664
	16.2.1 Continuous load current 16.2.2 Discontinuous load current Example 16.1: DC chopper (first quadrant) with load ba Example 16.2: DC chopper with load back emf - verge of Example 16.3: DC chopper with load back emf - discon	ck emf 672 of discontinuous conduction 676 tinuous conduction 677
16.3	Second quadrant dc chopper	680
	16.3.1 Continuous load inductor current	

xiv

663

16.3.2 Discontinuous load inductor current

Power Electronics

Example 16.4: Second quadrant DC chopper - continuous inductor current 685

16.4 Two guadrant dc chopper - Q I and Q II 687 Example 16.5: Two quadrant DC chopper with load back emf 690 16.5 Two guadrant dc chopper – Q I and Q IV 693 16.5.1 dc chopper: – Q I and Q IV – multilevel output voltage switching (three level) 16.5.2 dc chopper: – Q I and Q IV – bipolar voltage switching (two level) 16.5.3 Multilevel output voltage states, dc chopper Example 16.6: Asymmetrical, half H-bridge, dc chopper 699 16.6 Four quadrant dc chopper 701 16.6.1 Unified four quadrant dc chopper - bipolar voltage output switching 16.6.2 Unified four guadrant dc chopper - multilevel voltage output switching

709

711

17

DC to AC Inverters - Switched Mode

Example 16.7: Four quadrant dc chopper

17.1	dc-to-ac voltage-source inverter bridge topologies	711
	17.1.1 Single-phase voltage-source inverter bridge 17.1.1i - Square-wave (bipolar) output 17.1.1ii - Quasi-square-wave (multilevel) output Example 17.1: Single-phase H-bridge with an L-R load Example 17.2: H-bridge inverter ac output factors	117 718
	Example 17.3: Harmonic analysis of H-bridge with an L-R I	oad 720
	Example 17.4: Single-phase half-bridge with an L-R load	721
	 17.1.2 Three-phase voltage-source inverter bridge 17.1.2 1.20° (π) conduction 17.1.21 - 180° (π) conduction 	
	 17.1.3 Inverter ac output voltage and frequency control technic 17.1.3 - Variable voltage dc link 17.1.3i - Variable voltage dc link 	ques
	Example 17.5: Single-pulse width modulation 17.1 3ii - Multi-pulse width modulation	732
	 17.1.3iv - Multi-pulse, selected notching modulation – selected 17.1.3v - Sinusoidal pulse-width modulation (SPWM) 17.1.3vi - Phase dead-banding 17.1.3vii - Triplen Injection modulation 17.1.4 Assessment of PWM modulation techniques 17.1.5 Common mode voltage 17.1.6 DC link voltage boosting 	ed harmonic elimination
17.2	dc-to-ac controlled current-source inverters	751
	17.2.1 Single-phase current source inverter 17.2.2 Three-phase current source inverter	
17.3	Multi-level voltage-source inverters	755
	 17.3.1 Diode clamped multilevel inverter 17.3.2 Flying capacitor multilevel inverter 17.3.3 Cascaded H-bridge multilevel inverter 17.3.4 Capacitor clamped modular multilevel M2C inverter 17.3.5 PWM for multilevel inverters 17.3.4i - Multiple offset triangular carriers 17.3.4i - Multilevel rotating voltage space vector 	

17.4	Reversible dc link converters	766
	17.4.1Independent control17.4.2Simultaneous control17.4.3Inverter regeneration	
17.5	Standby inverters and uninterruptible power supplies	770
	17.5.1 Single-phase UPS 17.5.2 Three-phase UPS	
17.6	Power filters	772
	Example 17.6: L-C filter design 772	

18

DC to AC Inverters - Resonant Mode

18.1	Resonant dc-ac inverters	775
18.2	L-C resonant circuits	776
	18.2.1 - Series resonant L-C-R circuit 18.2.2 - Parallel resonant L-C-R circuit	
18.3	Series-load, series resonant voltage-source inverters	780
	18.3.1 - Series resonant inverter – single inverter leg 18.3.2 - Series resonant inverter – H-bridge voltage-source inverter 18.3.3 – Series circuit variations	
18.4	Parallel-load, series-resonant voltage-source inverter - single invert	er leg 784
18.4 18.5	Parallel-load, series-resonant voltage-source inverter – single invert Series-parallel-resonant voltage-source inverter – single inverter leg	er leg 784 785
18.4 18.5	Parallel-load, series-resonant voltage-source inverter – single invert Series-parallel-resonant voltage-source inverter – single inverter leg Summary of voltage source resonant inverters	er leg 784 785
18.4 18.5 18.6	Parallel-load, series-resonant voltage-source inverter – single invert Series-parallel-resonant voltage-source inverter – single inverter leg Summary of voltage source resonant inverters Parallel resonant current-source inverters	er leg 784 785 787
18.4 18.5 18.6	Parallel-load, series-resonant voltage-source inverter – single inverter Series-parallel-resonant voltage-source inverter – single inverter leg Summary of voltage source resonant inverters Parallel resonant current-source inverters 18.6.1 - Parallel resonant inverter – single inverter leg 18.6.2 - Parallel resonant inverter – single inverter leg 18.6.2 - Parallel resonant inverter – H-bridge current-source inverter Example 18.1: Half-bridge with a series L-C-R load 789	er leg 784 785 787

19

DC to DC Converters - Switched Mode

- 19.1 The forward converter
 - 19.1.1 Continuous inductor current
 - 19.1.2 Discontinuous inductor current
 - 19.1.3 Load conditions for discontinuous inductor current
 - 19.1.4 Control methods for discontinuous inductor current
 - 19.1.4i fixed on-time, variable switching frequency 19.1.4ii - fixed switching frequency, variable on-time
 - 19.1.5 Output ripple voltage
 - 19.1.6 Apparent load resistance

796

903

20		
Adv	anced DC to DC Converters - Switched Mod	de
20.1	Basic generic smps transfer function mapping	855
20.2	Basic generic current sourced smps	856
20.3 20.4	Generic current sourced converters, converted to voltage sourced of Thirty-three dc-to-dc voltage source converters	converters 839 859
Examp Examp	le 20.1: C5 (Cuk) converter topological conversion to G3 and G4 top le 20.2: C1 and C2 converter topological conversion to G5 and G6 to	ologies 861 pologies 863
20.5	Converters with zero average capacitor voltage	864
20.6	Converters with continuous input and output current (continuous p 20.6.1 Converter component ratings	ower) 867
20.7	Transformer isolated buck-boost dc-dc converters	872
20.8	Capacitor ripple voltage	874
20.9	Current-Doubler Rectifier	875
20.10	Tapped inductor operation	877
	20.10iReversible tapped inductor smps20.10iiCoupled circuit leakage inductance	
20.11	HV referenced dc to dc converter	883
20.12	Current sourced dc to dc converters	883
20.13	Appendix: Analysis of non-continuous inductor current operation Operation with constant input voltage, E_i Operation with constant output voltage, v_o	885
21		
DC t	o DC Converters - Resonant Mode	
21.1	Series loaded resonant dc to dc converters	904
	21.1.1 Modes of operation - series resonant circuit 21.1.2 Circuit variations	
21.2	Parallel loaded resonant dc to dc converters	909
	21.2.1 Modes of operation- parallel resonant circuit 21.2.2 Circuit variations	
21.3	Series-parallel load resonant dc to dc converters	912

21.3.1	LCC resonant tank circuit
21.3.2	LLC resonant tank circuit

21.4	Resonant coupled-load configurations	915
------	--------------------------------------	-----

Example 21.1: Transformer-coupled, series-resonant, dc-to-dc converter 917

Power Electronics

	Example 19.1: Buck (step-down forward) converter80219.1.6Underlying operational mechanisms of the forward converter19.1.7Hysteresis voltage feedback control of the forward converterExample 19.2: Hysteresis controlled buck converter808	
19.2	Flyback converters	810
19.3	The boost converter	810
	 19.3.1 Continuous inductor current 19.3.2 Discontinuous capacitor charging current in the switch off-state 19.3.3 Discontinuous inductor current 19.3.4 Load conditions for discontinuous inductor current 19.3.5 Control methods for discontinuous inductor current 19.3.5 - fixed on-time, variable switching frequency 19.3.5 ii - fixed switching frequency, variable on-time 19.3.6 Output ripple voltage Example 19.3: Boost (step-up flyback) converter 815 Example 19.4: Alternative boost (step-up flyback) converter 	
19.4	The buck-boost converter	818
	 19.4.1 Continuous choke (inductor) current 19.4.2 Discontinuous capacitor charging current in the switch off-state 19.4.3 Discontinuous choke current 19.4.4 Load conditions for discontinuous inductor current 19.4.5 Control methods for discontinuous inductor current 19.4.5 Control methods for discontinuous inductor current 19.4.5 Fixed on-time, variable switching frequency 19.4.6 Output ripple voltage 19.4.7 Buck-boost, flyback converter design procedure Example 19.5: Buck-boost flyback converter 	
19.5	Flyback converters – a conceptual assessment	826
19.6	The output reversible converter	829
	19.6.1 Continuous inductor current 19.6.2 Discontinuous inductor current 19.6.3 Load conditions for discontinuous inductor current 19.6.4 Control methods for discontinuous inductor current 19.6.4i - fixed on-time, variable switching frequency 19.6.4ii - fixed switching frequency, variable on-time Example 19.6: Reversible forward converter 832 19.6.5 Comparison of the reversible converter with alternative converter	rs
19.7	The boost-buck (Ćuk) converter	834
	19.7.1Continuous inductor current19.7.2Discontinuous inductor current19.7.3Optimal inductance relationship19.7.4Output voltage rippleExample 19.7:Cuk converter836	
19.8	Comparison of basic converters	837
	19.8.1 Critical load current 19.8.2 Bidirectional converters 19.8.3 Isolation 19.8.3i - The isolated output, forward converter 19.8.3i: - The isolated output, flyback converter Example 19.8: Transformer coupled flyback converter 843 Example 19.9: Transformer coupled forward converter	
19.9	Multiple-switch, balanced, isolated converters	847

19.9.1 The push-pull converter 19.9.2 Bridge converters

xix

XX	

21.5	Reson	ant switch, dc to dc step-down voltage converters	919	
	21.5.1	Zero-current, resonant-switch, dc-to-dc converter		
		21 5 1i - Zero-current full-wave resonant switch converter	131011	
	21.5.2	Zero-current, resonant-switch, dc-to-dc converter		
		$-\frac{1}{2}$ wave, C _R parallel with switch ve	ersion	
	21.5.3	Zero-voltage, resonant-switch, dc-to-dc converter		
		$-\frac{1}{2}$ wave, C_R parallel with switch ve	ersion	
	01 E 4	21.5.3i - Zero-voltage, full-wave resonant switch converter		
	21.5.4	2ero-vollage, resonant-switch, dc-to-dc converter	reion	
	Fxamr	ole 21 2. Zero-current resonant-switch dc-to-dc converter -	1/2 wave 932	
	Examp	ple 21.3: Zero-current, resonant-switch, dc-to-dc converter -	full-wave 934	
	Examp	ole 21.4: Zero-voltage, resonant-switch, dc-to-dc converter -	1⁄2 wave 935	
21.6	Reson	ant switch, dc to dc step-up voltage converters	936	
	21.6.1 21.6.2	ZCS resonant-switch, dc-to-dc step-up voltage converters ZVS resonant-switch, dc-to-dc step-up voltage converters		
	Summ	ary and comparison of ZCS and ZVS Converters		
21.7	Annon	udiv: Matrices of resonant switch buck boost and buck/boo	st convortors 9/2	
21.7	Appen		St converters 542	
~~				
22				
22				947
22 50/6	0Hz	Transformers: Single and Three Phas	e	947
22 50/6 ^{22.1}	0Н г ос <i>м</i> и	Transformers: Single and Three Phase	e 947	947
22 50/6 ^{22.1}	0Hz	Transformers: Single and Three Phase	9 47	947
22 50/6 22.1	OHZ DC <i>MI</i> 22.1. 22.1	Transformers: Single and Three Phas WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroids core mmf imbalance cancellation – zig zi	e 947	947
22 50/6 22.1	OHZ DC MI 22.1. 22.1. 22.1	Transformers: Single and Three Phas WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroidal core mmf imbalance cancellation – zig-za 3 Single-phase transformer connection, with full-wave rectification	e 947 ag winding	947
22 50/6 22.1	OHZ DC M 22.1. 22.1. 22.1. 22.1. 22.1.	Transformers: Single and Three Phas WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroidal core mmf imbalance cancellation – zig-za 3 Single-phase transformer connection, with full-wave rectificatio 4 Three-phase transformer connections	e 947 ag winding n	947
22 50/6 ^{22.1}	DC M 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1.	Transformers: Single and Three Phase WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroidal core mmf imbalance cancellation – zig-zz 3 Single-phase transformer connection, with full-wave rectificatio 4 Three-phase transformer connections 5 Three-phase transformer, half-wave rectifiers - core mmf imbal	947 947 ag winding n ance	947
22 50/6 22.1	DC M 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1.	Transformers: Single and Three Phas WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroidal core mmf imbalance cancellation – zig-zi 3 Single-phase transformer connection, with full-wave rectificatio 4 Three-phase transformer connections 5 Three-phase transformer, half-wave rectifiers - core mmf imbal 6 Three-phase transformer with hexa-phase rectification, mmf im	947 947 ag winding n ance balance	947
22 50/6 22.1	OHZ DC MM 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1.	Transformers: Single and Three Phas WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroidal core mmf imbalance cancellation – zig-ze 3 Single-phase transformer connection, with full-wave rectification 4 Three-phase transformer connections 5 Three-phase transformer, half-wave rectifiers - core mmf imbal 6 Three-phase transformer with hexa-phase rectification, mmf im 7 Three-phase transformer mmf imbalance cancellation – zig-zeg	947 947 ag winding n ance balance g winding	947
22 50/6 22.1	OHZ 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1.	Transformers: Single and Three Phas WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroidal core mmf imbalance cancellation – zig-zi 3 Single-phase transformer connection, with full-wave rectification 4 Three-phase transformer connections 5 Three-phase transformer, half-wave rectifiers - core mmf imbal 6 Three-phase transformer with hexa-phase rectification, mmf im 7 Three-phase transformer mmf imbalance cancellation – zig-zig 8 Three-phase transformer full-wave rectifiers – zero core mmf	947 947 ag winding n ance balance g winding	947
22 50/6 22.1	OHZ DC MM 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1.	Transformers: Single and Three Phas WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroidal core mmf imbalance cancellation – zig-za 3 Single-phase transformer connection, 4 Three-phase transformer connections 5 Three-phase transformer, half-wave rectifiers - core mmf imbal 6 Three-phase transformer with hexa-phase rectification, mmf im 7 Three-phase transformer mmf imbalance cancellation – zig-za 8 Three-phase transformer full-wave rectifiers – zero core mmf	e 947 ag winding n ance balance g winding	947
22 50/6 22.1	COHZ 22.1. 22.	Transformers: Single and Three Phas WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroidal core mmf imbalance cancellation – zig-za 3 Single-phase transformer connection, with full-wave rectification 4 Three-phase transformer, half-wave rectifiers - core mmf imbal 6 Three-phase transformer with hexa-phase rectification, mmf im 7 Three-phase transformer mmf imbalance cancellation – zig-za 8 Three-phase transformer full-wave rectifiers – zero core mmf 7 Three-phase transformer full-wave rectifiers – zero core mmf	e 947 ag winding n ance balance g winding 972	947
 22 50/6 22.1 22.2 22.3 	COHZ DC MM 22.1. 22.	Transformers: Single and Three Phas WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroidal core mmf imbalance cancellation – zig-zi 3 Single-phase transformer connection, with full-wave rectification 4 Three-phase transformer connections 5 Three-phase transformer, half-wave rectifiers - core mmf imbal 6 Three-phase transformer with hexa-phase rectification, mmf im 7 Three-phase transformer mmf imbalance cancellation – zig-zig 8 Three-phase transformer full-wave rectifiers – zero core mmf ransformers of Transformers	e 947 ag winding n ance balance g winding 972 977	947
 22 50/6 22.1 22.2 22.3 	COHZ DC MM 22.1. 22.	Transformers: Single and Three Phas WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroidal core mmf imbalance cancellation – zig-zi 3 Single-phase transformer connection, with full-wave rectification 4 Three-phase transformer connections 5 Three-phase transformer, half-wave rectifiers - core mmf imbala 6 Three-phase transformer with hexa-phase rectification, mmf im 7 Three-phase transformer mmf imbalance cancellation – zig-zag 8 Three-phase transformer full-wave rectifiers – zero core mmf ransformers of Transformers	e 947 ag winding n ance balance g winding 972 977	947
 22 50/6 22.1 22.2 22.3 	22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. Auto-t Types	Transformers: Single and Three Phas WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroidal core mmf imbalance cancellation – zig-zi 3 Single-phase transformer connections 5 Three-phase transformer connections 5 Three-phase transformer, half-wave rectifiers - core mmf imbal 6 Three-phase transformer with hexa-phase rectification, mmf im 7 Three-phase transformer mmf imbalance cancellation – zig-zig 8 Three-phase transformer full-wave rectifiers – zero core mmf 7 Three-phase transformer full-wave rectifiers – zero core mmf 8 Three-phase transformer full-wave rectifiers – zero core mmf	e 947 ag winding n ance balance g winding 972 977	947
22 50/6 22.1 22.2 22.3 23	22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. 22.1. Auto-t Types	Transformers: Single and Three Phas WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroidal core mmf imbalance cancellation – zig-zi 3 Single-phase transformer connections 5 Three-phase transformer connections 5 Three-phase transformer, half-wave rectifiers - core mmf imbal 6 Three-phase transformer with hexa-phase rectification, mmf im 7 Three-phase transformer mmf imbalance cancellation – zig-zig 8 Three-phase transformer full-wave rectifiers – zero core mmf 7 Three-phase transformer full-wave rectifiers – zero core mmf 8 Three-phase transformer full-wave rectifiers – zero core mmf	e 947 ag winding n ance balance g winding 972 977	947
22 50/6 22.1 22.2 22.3 23	COHZ DC MM 22.1. 22.	Transformers: Single and Three Phas WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroidal core mmf imbalance cancellation – zig-zi 3 Single-phase transformer connections 5 Three-phase transformer connections 5 Three-phase transformer, half-wave rectifiers - core mmf imbal 6 Three-phase transformer with hexa-phase rectification, mmf im 7 Three-phase transformer mmf imbalance cancellation – zig-zig 8 Three-phase transformer full-wave rectifiers – zero core mmf 7 Transformers of Transformers	e 947 ag winding n ance balance g winding 972 977	947
22 50/6 22.1 22.2 22.3 23 HV I	COHZ DC MM 22.1. 22.	Transformers: Single and Three Phas WFs in converter transformers 1 Effect of multiple coils on multiple limb transformers 2 Single-phase toroidal core mmf imbalance cancellation – zig-zig 3 Single-phase transformer connections 5 Three-phase transformer connections 5 Three-phase transformer with hexa-phase rectification, mmf im 7 Three-phase transformer mmf imbalance cancellation – zig-zig 8 Three-phase transformer full-wave rectifiers – zero core mmf 7 Three-phase transformer full-wave rectifiers – zero core mmf 8 Three-phase transformer full-wave rectifiers – zero core mmf 9 Transformers 1 of Transformers • Current Transmission	e 947 ag winding n ance balance g winding 972 977	947

23.1	HVDC electrical power transmission	980
23.2	HVDC configurations	980
	23.2i - Monopole and earth return 23.2ii - Bipolar 23.2iii - Tripole 23.2iv - Back-to-back 23.2v - Multi-terminal	

983

23.3 Typical HVDC transmission system

23.4	Twelve-pulse ac line frequency converters	984
	23.4.1 Rectifier mode 23.4.2 Inverter mode	
23.5	Twelve-pulse ac line frequency converter operation control	992
	23.5.1 Control and protection 23.5.2 HVDC Control objectives	
23.6	Delta/Delta/Double polygon 18 pulse converter	996
	23.6.1 Analysis of Double-Wound Polygon	
23.7	Filtering and power factor correction	999
	Example 23.1: Basic six-pulse converter based hvdc transmission Example 23.2: 12-pulse hvdc transmission 1001	1 999
23.8	VSC-based HVDC	1002
	23.8.1 VSC-Based HVDC control 23.8.2 Power control concept	
23.9	HVDC Components	1006
	Example 23.3: HVDC transmission with voltage source controlled Example 23.4: HVDC transmission with voltage source controlled Example 23.5: HVDC transmission with voltage source controlled Example 23.6: HVDC transmission with voltage source controlled	dc-link #1 1012 dc-link #2 1013 dc-link #3 10153 dc-link #4 1017
23.10	Twelve-pulse transformer based HVDC	1018
23.11	VSC-HVDC transmission systems - modular multilevel converter, l	M ² C 1018
23.12	Multi-terminal VSC HVDC	1021
23.13	HVDC Earth Electrodes	1022
23.14	HVDC VSC features	1023
23.15	HVDC LCC features	1024
23.16	Features of conventional HVDC and HVAC transmission	1025
23.17	Appendix: HVDC topology classification	1026
24		

Power Electronics

HVDC Transmission Modelling

1029

1029

- 24.1.1 AC circuit breaker 24.1.2 Power converter
- 24.1.3 Power filter

Main system components

24.1.4 Power transformer

24.1

24.1.5 Converter PWM modelling

24.2 VSC HVDC ac power flow control - HVDC PQ operating diagrams 1000

24.3	VSC: vector control, coordinate frame transformation, inn	er decoupled current control 1002
	24.3.1 Converter and ac grid model in static frame	
	24.3.2 Converter and ac grid models in a rotating coordinat	e frame
	24.3.3 Inner current controller design	
	24.3.4 Outer controller design	
	24.3.5 AC voltage control	
	24.3.6 Power control	
	24.3.7 DC voltage control	
	24.3.8 AC grid support	
	24.3.9 The complete VSC controller	
24.4	VSC HVDC SIMULINK controller steady-state simulation	1007
24.5	VSC HVDC SIMULINK simulation of fault conditions	1011
	24.5.1 AC faults on V_{α}	
	24.5.2 DC fault - on the dc link	
	24.5.3 Converter modelling for reduced dc voltage	
	24.5.4 Influence of the dc link capacitors	
24.6	VSC HVDC interaction with ac systems	1017
	24.6.1 Power flow between ac systems	
	24.6.2 Operation with a passive ac system	
24.7	HVDC VSC harmonics and filtering	1019
	24.7.1 Converter modulation	
	24.7.2 Multi-pulse and multilevel converters	
	24.7.3 Comparison of harmonic content at the ac terminals	

FACTS Devices and Custom Controllers

25.1	Flexible AC transmission systems - FACTS	1055
25.2	Power quality	1056
25.3	Principles of power transmission	1056
	Example 25.1: AC transmission line VAr	1058
25.4	The theory of instantaneous power (<i>p-q</i>) in three-phase	1059
25.5	FACTS devices	1063
25.6	Static reactive power compensation	1064
25.7	Static shunt reactive power compensation	1065
	25.7.1 - Thyristor controlled reactor TCR 25.7.2 - Thyristor switched capacitor TSC 25.7.3 - Shunt Static VAr compensator SVC (TCR//TSC) Example 25.2: Shunt thyristor controlled reactor specificati	i on 1070
25.8	Static series reactive power compensation	1071
	25.8.1 - Thyristor switched series capacitor TSSC 25.8.2 - Thyristor controlled series capacitor TCSC 25.8.3 - Series Static VAr compensator SVC (TCR//C)-TCSC	

Power Electronics

	Example 25.3: Series thyristor controlled reactor specification – integral control 1076 Example 25.4: Series thyristor controlled reactor specification – Vernier control 1078 25.8.4 Static series phase angle reactive power compensation/shift SPS	
25.9	Self commutating FACTS devices - custom power	1083
	25.9.1 - Static synchronous series compensator or Dynamic Voltage Res 25.9.2 - Static synchronous shunt compensator – STATCOM 25.9.3 - Unified power flow controller - UPFC	storer - DVR
25.10	Combined active and passive filters	1099
	25.10.1 - Current compensation – shunt filtering 25.10.2 - Voltage compensation – series filtering 25.10.3 – Hybrid Arrangements 25.10.4 - Active and passive combination filtering	
25.11	Summary of compensator comparison and features	1102
25.12	Summary of general advantages of AC transmission over DC transmissi	nission 1104

26

Inverter Grid Connection for Embedded Generation

26.1	Distributed generation	1105
	26.1.1 DG Possibilities 26.1.2 Integration and Interconnection Requirements 26.1.3 Grid ride through 26.1.4 Conventional protection	
26.2	Interfacing conversion methods for dc energy sources	1110
26.3	Interfacing conversion methods for ac energy sources	1116
	26.3.1 Unity Power Factor Current Control of a Sinusoidal Current Activ	ve Boost Rectifier
26.4	Back to grid (B2G) electric vehicle charging	1118

27

1055

Energy Sources and Storage - Primary Sources

27.1	Hydrocarbon attributes	1119
27.2	The fuel cell	1121
27.3	Materials and cell design	1123
	 27.3.1 Electrodes 27.3.2 Catalyst 27.3.3 Electrolyte 27.3.4 Interconnect 27.3.5 Stack design 	
27.4	Fuel cell chemistries	1126
	27.4.1 Proton H ⁺ Cation Conducting Electrolyte 27.4.2 Anion (OH, $CO_3^{2^2}$, O^{2^1}) Conducting Electrolyte	

1105

xxiii

27.5	Six main fuel cells	1129
27.6	Low-temperature fuel cell types	1129
	27.6.1 Polymer exchange membrane fuel cell 27.6.2 Alkaline fuel cell 27.6.3 Direct-methanol fuel cell	
27.7	High-temperature fuel cell types	1132
	27.7.1 Phosphoric-acid fuel cell 27.7.2 Molten-carbonate fuel cell 27.7.3 Solid oxide fuel cell	
27.8	Fuel cell summary	1136
27.9	Fuels	1137
27.10	Fuel reformers	1138
	27.10.1 Natural gas reforming	
27.11	Hydrogen storage and generation from hydrides	1141
27.12	Fuel cell emissions	1143
27.13	Fuel cell electrical characteristics	1143
27.14	Thermodynamics	1144
	Example 27.1: Formation of water vapour1145Example 27.2: Derivation of Ideal Fuel Cell Voltage1146Example 27.3: Carbon fuel cell1148	
27.15	Fuel cell features	1149
27.16	Fuel cell challenges	1150
	27.16.1 Chemical Technology Challenges 27.16.2 System Technology Challenges	
27.17	Fuel cell summary	1151
27.18	Photovoltaic cells: converting photons to electrons	1154
27.19	Silicon structural physics	1154
	Example 27.4: Photons to create hole-electron pairs in silicon 1123	
27.20	Semiconductor materials and structures	1156
	27.20.1 Silicon 27.20.2 Polycrystalline thin films 27.20.3 Single-Crystalline Thin Film 27.20.4 Nanocrystalline	
27.21	PV cell structures	1165
	 27.21.1 Homojunction Device 27.21.2 Heterojunction Device 27.21.3 p-i-n and n-i-p Devices 27.21.4 Multi-junction Devices 	
27.22	Equivalent circuit of a PV cell	1168
	27.22.1 Ideal PV cell model 27.22.2 Practical PV cell model 27.22.3 Maximum-power point	

27.23	Photovoltaic cell efficiency factors		1171
	Example 27.5: Solar cell characteristics Example 27.6: PV cell and module characteristics 27.23.1 Impact of temperature and insolation on I-V characteristic Example 27.7: PV module temperature characteristics	1172 1173 ics 1175	
27.24	Module (or array) series and parallel PV cell connection		1176
27.25	Battery storage		1178
27.26	The organic photovoltaic cell		1179
27.27	Summary of PV cell technology		1180
Ex Ex Ex Ex Ex	tample 27.8: <i>PV cell open circuit voltage and short circuit current</i> tample 27.9: <i>PV cell maximum power and efficiency</i> tample 27.10: <i>PV cell electron excitation</i> tample 27.11: <i>Fuel cell voltage</i> tample 27.12: <i>PV cell efficiency factors</i> tample 27.13: <i>PV cell efficiency factors</i>	1182 1182 1183 1183 1184 1184	
Ex	ample 27.14: PV cell efficiency factors	1185	

Energy Sources and Storage - Secondary Sources28.1Batteries1189

28.2	The secondary electro-chemical cell		1190
	28.2.1 REDOX galvanic action 28.2.2 Intercalation action		
28.3	Characteristics of secondary batteries		1194
28.4	The lead-acid battery		1197
	 28.4.1 Basic lead-acid cell theory 28.4.2 Cell/battery construction 28.4.3 Characteristics of the flooded lead-acid cell 28.4.4 Different lead-acid cell and battery arrangements 28.4.5 Lead acid battery charging and storage regimes 28.4.6 Valve-regulated battery discharge characteristics Example 28.1: Lead-acid battery lischarge characteristics Example 28.2: Lead acid battery life 28.4.7 Gassing and internal recombination 28.4.8 User properties and cell type comparisons 	1213 1216	
28.5	The nickel-cadmium battery		1224
	Example 28.3: NiCd battery electrolyte life Example 28.4: NiCd battery requirement 28.5.1 Nickel-Cadmium battery properties	1229 1232	
28.6	The nickel-metal-hydride battery		1233
	28.6.1 Nickel-metal-hydride battery properties 28.6.2 Nickel-metal-hydride battery characteristics 28.6.3 Comparison between NiCd and NiMH Cells		

28.7	The lithium-ion battery	1240
	 28.7.1 Cathode variants cells 28.7.2 General Lithium-ion cell characteristics 28.7.3 General Lithium-ion cell properties 28.7.4 Cell protection circuits 	
28.8	Battery thermodynamics	1253
	Example 28.5: Electrochemistry – battery thermodynamics 1254	
28.9	Summary of key primary and secondary cell technologies	1255
28.10	The Electrochemical double layer capacitor - supercapacitor	1257
	28.10.1 Double layer capacitor model Example 28.6: Ultracapacitor module design using a given cell 126 28.10.2 Cell parameter specification and measurement methods 28 28.10.3 Cell characteristics 28 28.10.4 Thermal properties 28.10.5 Estimated life duration 28.10.6 Cell voltage equalization in a series stack of ultracapacitors 28.10.7 28.10.8 Pseudocapacitors 28.10.8 Pseudocapacitors Example 28.7: Ultracapacitor constant current characteristics 1270	51
28.11	Thermoelectric modules	1272
	28.11.1 Theoretical background 28.11.2 Thermoelectric materials 28.11.3 Mathematical equations for a thermoelectric module 28.11.4 Features of thermoelectric cooling - Peltier elements 28.11.5 TE cooling design Example 28.8: Thermoelectric cooler design 128.11.6 Thermoelectric power generation Example 28.9: Thermoelectric generator design 128.12 Thermoelectric regreater	
28 12	Annendix: Primary cells	1292
20.12		.232
28.13	Appendix: Empirical battery model	1294

xxv

Capacitors

29.1	Capacitor general properties		1300	
	29.1.1	Capacitance		
	29.1.2	Volumetric efficiency		
	29.1.3	Equivalent circuit		
	29.1.4	Lifetime and failure rate		
	Examp	le 29.1: Failure rate	1304	
	Examp	le 29.2: Capacitor reliability	13057	
	29.1.5	Self-healing		
	29.1.6	Temperature range and capacitance dependence		
	29.1.7	Dielectric absorption		
29.2	Liquid	(organic) and solid, metal oxide dielectric capacitors	1307	
	29.2.1	Construction		
	29.2.2	Voltage ratings		
	29.2.3	Leakage current		
	~ ~ ~ /			

29.2.4	Ripple	current
--------	--------	---------

	Example 29.3: Capacitor ripple current rating131229.2.5 Service lifetime and reliability1312	
	29.2.51 - Liquid, oxide capacitorsExample 29.4: A1203 capacitor service life1314	
	29.2.5ii - Solid, oxide capacitors Example 29.5: Lifetime of tantalum capacitors 1315	
29.3	Plastic film dielectric capacitors	1316
	29.3.1 Construction 29.3.1i - Metallised plastic film dielectric capacitors 29.3.1ii - Foil and plastic film capacitors 29.3.1ii - Mixed dielectric capacitors	
	 29.3.2 Insulation 29.3.3 Electrical characteristics 29.3.3i - Temperature dependence 29.3.3ii - Humidity dependence 29.3.3iii - Time dependence 29.3.3iv - Dissipation factor and impedance 29.3.3v - Voltage derating with temperature 29.3.3vi - Voltage and current derating with frequency 	
	Example 29.6: Power dissipation limits - ac voltage 1326	
	29.3.3 Non-sinusoidal repetitive voltages Example 29.7: Capacitor non-sinusoidal voltage rating 1328 Example 29.8: Capacitor power rating for non-sinusoidal voltages 29.3.5 DC plastic capacitors	1328
29.4	Emi suppression capacitors	1331
	29.4.1Class X capacitors29.4.2Class Y capacitors29.4.3Feed-through capacitors	
29.5	Ceramic dielectric capacitors	1333
	29.5.1 Class I dielectrics 29.5.2 Class II dielectrics 29.5.3 Applications	
29.6	Mica dielectric capacitors	1336
	29.6.1 Properties and applications	
29.7	Capacitor type comparison based on key properties	1338
29.8	Appendix: Minimisation of stray capacitance	1338
29.9	Appendix: Capacitor lifetime derating	1340

30

1299

Resistors

30.1Resistor types134230.2Resistor construction134230.2.1Film resistor construction134230.2.2Carbon composition film resistor construction1344solutionSolid Carbon ceramic resistor construction1344

30.2.4 Wire-wound resistor construction

30.3	Electrical properties	1345
	 30.3.1 Resistor/Resistance coefficients 30.3.1i - Temperature coefficient of resistance Example 30.2: Temperature coefficient of resistance for a the 30.3.1i - Voltage coefficient of resistance 30.3.2 Maximum working voltage 30.3.3 Residual capacitance and residual inductance Example 30.3: Coefficients of resistance for a solid carbon of 	nick film resistor 1348 ceramic resistor 1351
30.4	Thermal properties	1351
	30.4.1 Resistors with heatsinking Example 30.4: Derating of a resistor mounted on a heatsink 30.4.2 Short time or overload ratings Example 30.5: Non-repetitive pulse rating	1354 1355
30.5	Repetitive pulsed power resistor behaviour	1355
	Example 30.6: <i>Pulsed power resistor design</i> 30.5.1 <i>Empirical pulse power</i> 30.5.2 <i>Mathematical pulse power models</i> Example 30.7: <i>Solid carbon ceramic resistor power rating</i>	1356 1357
30.6	Stability and endurance	1359
	Example 30.8: Power resistor stability	13602
30.7	Special function power resistors	1360
	 30.7.1 Fusible resistors 30.7.2 Circuit breaker resistors 30.7.3 Temperature sensing resistors 30.7.4 Current sense resistors 30.7.5 Thermistors 30.7.6 Light dependent resistors 30.7.7 Potentiometer (Rhéostat) 30.7.8 Other specialised resistors 	
30.8	Appendix: Carbon ceramic electrical and mechanical data	and formula 1373
30.9	Appendix: Characteristics of resistance wire	1373
30.10	Appendix: Preferred resistance values of resistors (and ca	pacitors) 1373

1375

Soft Magnetic Materials - Inductors and Transformers

 31.1
 Inductor and transformer electrical characteristics
 1376

 31.1.1
 Inductors
 31.1.2

 31.1.2
 Transformers or magnetically coupled circuits

31.2 Magnetic material types

- 31.2.1 Ferromagnetic materials 31.2.1i - Steel 31.2.1ii - Iron powders 31.2.1ii - Alloy powders 31.2.1iv - Nanocrystalline
- 31.2.2 Ferrimagnetic materials- soft ferrites

31.3	Comparison of material types	1379
31.4	Ferrite characteristics	1380
	 31.4.1 Dimensions and parameters 31.4.2 Permeability 31.4.2i - Initial or intrinsic permeability 31.4.2ii - Amplitude permeability and maximum permeability 31.4.2ii - Reversible or incremental permeability 31.4.2iv - Effective permeability 31.4.2v - Complex permeability 31.4.3 Coercive force and remanence 31.4.4 Core losses 31.4.4i - Core losses at low H 31.4.4i - Core losses at high H 31.4.5 Temperature effects on core characteristics 31.4.6 i - Parameter effects 31.4.6ii - Time effects 	
	Example 31.1: Inductance variation with time 13 31 4 6iii - Temperature effects	90
	Example 31.2: <i>Temperature effect on inductance</i> 13 31.4.7 Stored energy in inductors	90
31.5	Ferrite inductor and choke design, when carrying dc current	1392
	31.5.1 Linear inductors and chokes Example 31.3: Inductor design with Hanna curves 31.5 Li - Core temperature and size considerations	94
	Example 31.4: Inductor design including copper loss 13 31.5.2 Saturable inductors 31.5.3 Saturable inductor design	97
	Example 31.5: Saturable inductor design 14	1100
31.6	Power territe transformer design 31.6.1 Ferrite voltage transformer design Example 31.6: Ferrite voltage transformer design 14.31.6.2 Ferrite current transformer 31.6.3 Current transformer design requirements 31.6.4 Current transformer design procedure Example 31.7: Ferrite current transformer design 14	1402 05
31.7	Appendix: Soft ferrite general technical data	1414
31.8	Appendix: Technical data for a ferrite applicable to power application	ıs 1414
31.9	Appendix: Technical data for iron, nickel, and cobalt applicable to po	wer applications 1415
31.10	Appendix: Eddy currents, skin effect and proximity effect	1416
31.11	Appendix: Cylindrical inductor design	1417
	Example 31.8: Wound strip air core inductor14Example 31.9: Multi-layer air core inductor14	19 19
31.12	Appendix: Copper wire design data	1419
31.13	Appendix: Minimisation of stray inductance	1420
	 31.13.1 Reduction in wiring residual inductance 31.13.2 Reduction in component residual inductance 31.13.2i - Capacitors 31.13.2ii - Capacitors - parallel connected 31.13.2ii - Transformers 	

31.14	Appendix: Laminated bus bar design	1423
31.15	Appendix: Insulating material for between bus bar conductors	1426
31.16	Appendix: Materials by types of magnetization	1426
31.17	Appendix: Magnetic behaviour of stainless steels	1428

32

Hard Magnetic Materials - Permanent Magnets			
32.1	Magnetic properties	1435	
32.2	Classification of magnetic materials	1437	
	32.2.1 Alloys 32.2.2 Ceramics 32.2.3 Bonded 32.2.4 Flexible (rubber)		
32.3	Properties of hard magnetic materials	1449	
32.4	Permanent magnet magnetization curve (hysteresis loop) and recoin	1 1454	
32.5	Permanent magnet model	1456	
32.6	Load lines	1459	
	32.6.1Magnetic Circuit Equations32.6.2Intrinsic permeance coefficientExample 32.1:Magnet load dependant operating point146332.6.3Demagnetizing field		
32.7	Generalising equivalent magnetic circuits	1469	
32.8	Permanent magnet stability - Loss of magnetism	1471	
32.9	Recoil operation and associated losses	1474	
	32.9.1 Losses due to reverse magnetic fields 32.9.2 Demagnetisation due to temperature increase Example 32.2: Magnet load and temperature dependant operating p	ooint 1477	
32.10	Energy transfer	1479	
32.11	Force of attraction within an air gap	1483	
32.12	Appendix: Magnet processing and properties	1483	
32.13	Appendix: Magnetic basics	1485	
32.14	Appendix: Magnetic properties for sintered NdFeB and SmCo mag	nets 1485	
32.15	Appendix: Magnetic axioms	1487	

33			
Contactors and Rrelays			
33.1	Mechanical requirements for relay operation	1489	
33.2	Relay Contacts	1490	
	33.2.1 Contact characteristics33.2.2 Contact materials33.2.3 Contact life – material loss and transfer		
33.3	Defining relay performance	1495	
33.4	AC and DC relay coils	1497	
33.5	Temperature consideration of the coils in dc relays	1496	
	Example 33.1: Relay coil thermal properties 1499		
33.6	Relay voltage transient suppression	150	
	33.6.1 Types of transient suppression utilized with dc relay coils33.6.2 Relay contact arc suppression protection with dc power switch	ing relays	
33.7	DC power switching	1605	
33.8	Miniature Circuit Breakers	1509	
	33.8.1 AC MCBsExample 33.2: MCB properties5133.8.3 Residual Current Circuit Breaker		
33.9	The physics of vacuum high-voltage relays	1522	
33.10	Gas filled relays	1523	
	33.10.1 SF6 as a dielectric 33.10.2 Hydrogen as a dielectric		
33.11	High voltage relay designs	1524	
33.12	Contact ratings	1529	
33.13	High voltage relay grounding	1530	
33.14	A LV voltage, 750V dc, high-current, 350A dc, make and break rela	iy 1531	
33.15	X-ray emissions in vacuum relays	1533	
33.16	Power reconstitution conservation method	1453	
33.17	MV AC vacuum Interrupts for contactor, switch, and circuit-breaker application 1535		
	33.17.1Basic interruption principle33.17.2Medium-Voltage AC Vacuum circuit breaker characteristics33.17.3Medium-Voltage AC Vacuum circuit breaker Transient Recover33.17.4Altitude deratingExample 33.3: Vacuum circuit breaker altitude properties1543	ry Voltage, TRV	
33.18	Corona	1544	
33.19	Appendix: Contact metals	1546	

Transducers and Sensors			
34.1	General transducer properties		1548
34.2	Current measurement 34.2.1 Current measurement: closed loop ferrite transformer 34.2.2 Current measurement: Rogowski Coil 34.2.3 Flux-gate Transformer 34.2.4 Resistive Sensor 34.2.5 Magneto-optic Sensor 34.2.6 Integrated ac/dc current sensors		1549
34.3	Voltage measurement 34.3.1 Differential Isolation (galvanic) Amplifier		1563
34.4	Acceleration measurement Example 34.1: accelerometer sensitivity and linearity	1567	1565
34.5	Other sensors		1568

Nomencla	ture and symbols			1573
Degrees of IP	f protection codes according to IEC 60529 standard			1589
IEC 947 and IEC 947-3 Standards Selecting contactors according to IEC 947-3 standard			1590	
Glossary	of terms			1591
Gir Gir Gir Gir Gir Gir Gir Gir Gir Gir	ossary of Wafer Processing terminology ossary of Fan Cooling and other Heating and Coo ossary of Fuselink terminology (Fuseology) ossary of Varistor terminology ossary of PTC and NTC Thermistor terminology ossary of FACTS Terminology ossary of FACTS Terminology ossary of Solar Electric terminology ossary of Solar Electric terminology ossary of Capacitor terminology ossary of Resistor Terminology ossary of Resistor Terminology ossary of Relay terminology ossary of Solan Electric terminology ossary of Relay terminology ossary of Solenoid terminology [Chapter 33] ossary of <i>resolver and synchro</i> terminology	[Chapter 1] Jing terminology [Chapters 5, 6] [Chapter 5, 628] [Chapter 12] [Chapter 12] [Chapter 12] [Chapter 25] [Chapter 27] [Chapter 27] [Chapter 28] [Chapter 29] [Chapter 30] [Chapter 33] [Chapter 33] [Chapter 34]	1591 1595 1601 1604 1610 1611 1614 1615 1619 1625 1636 1637 1649 1662 1665	

Bibliography	1667
Physical constants	1679
INDEX	1680

PREFACE

The book is in five parts.

Part 1 covers power semiconductor switching devices, their static and dynamic electrical and thermal characteristics and properties. Part 2 describes device driving and protection, while Part 3 presents a number of generic applications. Part 4 covers systems and energy sources. The final part, Part 5, introduces capacitors, magnetic components, resistors, and dc relays and their characteristics relevant to power electronic applications.

- 1 Basic Semiconductor Physics and Technology
- 2 The pn Junction
- 3 Power Switching Devices and their Static Electrical Characteristics
- 4 Electrical Ratings and Characteristics of Power Semiconductor Switching Devices
- 5 Cooling of Power Switching Semiconductor Devices
- 6 High-Performance Cooling for Power Electronics
- 7 Load, Switch, and Commutation Considerations
- 8 Driving Transistors and Thyristors
- 9 Protecting Diodes, Transistors, and Thyristors
- 10 Switching-aid Circuits with Energy Recovery
- 11 Series and Parallel Device Operation, Interference, and Grounding
- 12 Device Protection
- 13 Naturally Commutating AC to DC Converters Uncontrolled Rectifiers
- 14 Naturally Commutating AC to DC Converters Controlled Rectifiers
- 15 AC Voltage Regulators
- 16 DC Choppers
- 17 DC to AC Inverters Switched Mode
- 18 DC to AC Inverters Resonant Mode
- 19 DC to DC Converters Switched-mode
- 20 Advanced DC to DC Converters Switched-mode
- 21 DC to DC Converters Resonant-mode
- 22 50/60Hz Transformers: Single and Three Phase
- 23 HV Direct-Current Transmission
- 24 HVDC Transmission Modelling
- 25 FACTS Devices and Custom Controllers
- 26 Inverter Grid Connection for Embedded Generation
- 27 Energy Sources and Storage: Primary Sources
- 28 Energy Sources and Storage: Secondary Sources
- 29 Capacitors
- 30 Resistors
- 31 Soft Magnetic Materials: Inductors and Transformers
- 32 Hard Magnetic Materials: Permanent Magnets
- 33 Contactors and Relays
- 34 Transducers and Sensors

The 174 non-trivial worked examples cover the key issues in power electronics.

BWW January 2021